A P2P SIP Architecture
- Two Layer Approach -
draft-sipping-shim-p2p-arch-00.txt

IETF65, Dallas
March 25, 2006

Eunsoo Shim
Sathya Narayanan
Greg Daley

Panasonic Digital Networking Laboratory
Two Layer Approach

- P2P overlay layer provides the following functions
 - P2P overlay management function - peer initiation (join), leave
 - P2P service function – placement and lookup of resources
- SIP is just an application over P2P overlay layer.
- DHT lookup messages are generic ---- independent of SIP call semantics or resource types
Hierarchical Structure of P2P Overlay

- Super Node (SN): Participate in DHT; reachable through predefined ports and protocols by any node (most likely to have a public IP address).
- Ordinary Node (ON): Not in DHT, associate with SNs and send service requests to them.
 - A P2P overlay network may have only SNs.
 - ON-SN hierarchy is independent of SIP UA-Proxy hierarchy.
- Bootstrap Server: provides information of some of existing SNs to a new node.
- Login Server: authenticates user identity (password-based) and issues a certificate for user public key.
Federation of P2P SIP Networks

- Multiple independent overlay networks are allowed.
 - Overlay identifier ≠ domain name
- Single-domain overlay: A P2P overlay network supporting only one domain.
- Multi-domain overlay: A P2P overlay network supporting multiple domains.
- No lookup or placement across overlay network boundaries (?)
 - Call routing to a peer in a remote overlay network --- via P2P Proxies
Possible P2P SIP Network Composition Scenarios

<table>
<thead>
<tr>
<th></th>
<th>UA</th>
<th>Proxy</th>
<th>Registrar</th>
<th>Role of P2P Overlay</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>P2P</td>
<td>P2P</td>
<td>Not Required</td>
<td>Replace the registrar and DNS lookup for locations of local proxies</td>
</tr>
<tr>
<td>(b)</td>
<td>CS</td>
<td>P2P</td>
<td>P2P</td>
<td>Replace the location database accessed by local proxies and the local registrar</td>
</tr>
</tbody>
</table>

Diagram:

1. **UA 1 (CS)**
 - Register
 - **P2P Registrar**
 - Add
 - **P2P Overlay Layer**
 - **P2P Proxy**
 - 1 INVITE
 - 2 Get
 - 3 UA2 Address
 - **P2P UA 2**
 - Add
 - 4 INVITE
 - 5 200 OK
Peer Initiation

- Any peer starts as an ordinary node (ON).

1. Bootstrap – discovering peers in the overlay
 - Service location (multicast)
 - Cached addresses
 - Last good addresses
 - Preconfigured bootstrap server

2. ON-SN Association
 - Contacting SN – UDP, TCP, Fallback Transport
 - Mutual return reachability test

3. Authentication
 - If ON does not have a certificate, contact the login server and receives the certificate.
 - ON-SN mutual authentication

4. NAT/FW Traversal
 - Create address bindings for inbound SIP messages
 - ICE (STUN, TURN)
Post Initiation Tasks

- Registration
 - Publish contacts (tuples of transport protocol, IP address, port) in the overlay

- Becoming a Super Node
 - Self-selected dynamically and automatically.
 - MUST be able to receive overlay messages from other SNs on predetermined protocols and ports.
 - SHOULD be online stably.
 - SHOULD have sufficient physical resources.
P2P Overlay API

- \(\text{get}(\text{in overlay_id}, \text{in name}, \text{out records}, \text{out error}) \)
- \(\text{add}(\text{in overlay_id}, \text{in name}, \text{in record}, \text{in lifetime}, \text{in option}, \text{out error}) \)
- \(\text{update}(\text{in overlay_id}, \text{in name}, \text{in record}, \text{in lifetime}, \text{in option}, \text{out error}) \)
- \(\text{remove}(\text{in overlay_id}, \text{in name}, \text{out error}) \)
Resource Record – User Location

<resource>
 <version>1.0</version>
 <type>user location</type>
 <key>19873761ab24</key>
 <lifetime>3600</lifetime>
 <timestamp>19809832142</timestamp>
 <user_URI>user@example.com</user_URI>
 <location>
 <node_IP>178.14.234.21</node_IP>
 <transport>TCP5060 UDP5060 TCP80 TCP443</transport>
 </location>
 <location>
 <node_IP>192.168.0.100</node_IP>
 <transport>TCP5060 UDP5060 TCP80 TCP443</transport>
 </location>
</resource>

- Resource name: <type> + <user_URI>
- Resource key = hash(resource name)
Resource Record – Proxy Location

```
<resource>  
<version>1.0</version>  
<type>proxy location</type>  
<key>19873761ab24</key>  
<lifetime> 36000 </lifetime>  
<timestamp>198023422</timestamp>  
<domain> example.com </domain>  
<location>  
  <node_IP>178.14.234.21</node_IP>  
  <transport>TCP5060 UDP5060 TCP80 TCP443</transport>  
</location>  
<location>  
  <node_IP>192.168.0.100</node_IP>  
  <transport>TCP5060 UDP5060 TCP80 TCP443</transport>  
</location>  
</resource>
```

- Resource name: `<type> + <domain>`
- Resource key = hash(resource name)
Security Considerations

- Bootstrapping Security
 - Mutual authentication is required.
- ON-SN Authentication
 - Minimize reliance on the central login server.
- Peer Transport Security
 - Message authentication is required.
- Firewalls
 - Allow port 80, 443 as the last resort ???
- Relay for NAT Traversal
 - Defend against compromised relays by end-to-end authentication
- Registration
 - Signature for the location records
 - Privacy issue
- Authentication when central servers are not reachable
- DoS attacks
 - Defend excessive overlay traffic generation by rate limiting
- Ill behaviors of SNs
 - Messing up DHT tables
- Free riders
 - Refusing or avoiding to be a SN
- And so on
Pros & Cons of the Two Layer Approach

- **Pros**
 - Transparent interoperation with client server SIP
 - Clarity
 - No confusion with semantics of existing SIP messages
 - Flexibility
 - Easier to support different overlay algorithms with little change in SIP messages
 - Sharing the overlay network --- common lookup mechanism for many things!
 - No change in DHT operation required to support advanced features of SIP-based P2P VoIP, IM, and Presence
 - Can share the same overlay network with more applications beyond basic VoIP call or IM.
 - For example, for P2P-based conferencing later.
 - Nodes without SIP entity can participate in the overlay network.

- **Cons**
 - No optimization of search and overlay maintenance by using SIP call semantics

- **Challenge**
 - Defining a new protocol
 - Can we reuse any existing protocols?
What Needs To Be Specified?

- P2P overlay protocol
 - P2P Overlay Algorithm
 - Message syntax and state machines
 - ON <-> SN, SN <-> SN
 - ON/SN <-> Login Server
 - ON/SN <-> Bootstrap Server
- SIP entity behavior
 - P2P-UA Behavior
 - P2P-Proxy Behavior
 - P2P-Registrar Behavior
- Interface between SIP layer and P2P overlay layer
 - Resource records (types, formats)
 - P2P Overlay API (semantics)
Acknowledgements

Henning Schulzrinne
Salman Baset